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Abstract

This paper addresses for the first time the analysis of laminated composite plates by oscillatory radial basis functions. These functions are very rarely used in the solution of PDEs, and this paper aims to
prove that such functions can be very accurate in the vibration and buckling analysis of laminated composite plates. A radial basis function, ϕ(∥x− xj∥) is a spline that depends on the Euclidian distance
between distinct data centers xj, j = 1, 2, ..., N ∈ Rn, also called nodal or collocation points. The use of oscillatory radial basis functions has not been seen in the literature. This paper investigates the
accuracy of such functions in the analysis of laminated composite plates.

Radial Basis Functions

The radial basis function (ϕ) approximation of a function (u) is given by

ũ(x) =
N∑
i=1

αiϕ (∥x− yi∥2) , x ∈ Rn (1)

where yi, i = 1, .., N is a finite set of distinct points (centers) in Rn. The coefficients αi are
chosen so that ũ satisfies some boundary conditions. The most common RBFs are

ϕ(r) = r3 ,cubic

ϕ(r) = (1− r)m+p(r) ,Wendland functions

ϕ(r) = e−(cr)2 ,Gaussian

ϕ(r) =
√
c2 + r2 ,Multiquadrics

ϕ(r) = (c2 + r2)−1/2 ,Inverse Multiquadrics

where the Euclidian distance r is real and non-negative, p(r) is a polinomial, and c is a shape
parameter, a positive constant. In this paper we use an oscillating function, a linear
Gaussian-Laguerre, defined as

ϕ(r) = 1/π e−(cr)2
(
2− (cr)2

)
(2)
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Figure 1. Oscillating and Gaussian functions

Based on the FSDT (first-order shear deformation theory), the transverse displacement w(x, y)
and the rotations θx(x, y) and θy(x, y) about the y− and x−axes are independently interpolated
due to uncoupling between inplane displacements and bending displacements for plates. For free
vibration analysis we consider the following equations of motion:
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where Dij and Aij are the bending and shear stiffness components, k is the shear correction
factor, and Ii are the mass inertias defined as

I0 =

∫ h
2

−h
2

ρdz, I2 =

∫ h
2

−h
2

ρz2dz (6)

Here ρ and h denote the density and the total thickness of the plate, respectively. For free
vibration problems we set p = 0, and assume harmonic solution in terms of displacements w, θx, θy
in the form

w(x, y, t) = W (w, y)eiωt; θx(x, y, t) = Ψx(w, y)e
iωt; θy(x, y, t) = Ψy(w, y)e

iωt (7)

where ω is the frequency of natural vibration.

Conclusions

In this paper we used the radial basis function collocation method to analyse buckling loads and
free vibrations of isotropic and laminated plates. The oscillating radial basis functions, here used
for the first time in the vibration and buckling analysis of composite plates, prove to be excellent
alternative to non-oscillating functions, such as the Gaussians, and present excellent convergence
and accurate results.

An example on free vibrations

The example considered is a simply supported square plate of the cross-ply lamination
[0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted by h and a, respectively. The
thickness-to-span ratio h/a = 0.2 is employed in the computation. The example considers a
Chebyshev grid. All layers of the laminate are assumed to be of the same thickness, density and
made of the same linearly elastic composite material. The following material parameters of a layer
are used:

E1

E2
= 10, 20, 30 or 40;G12 = G13 = 0.6E2;G3 = 0.5E2; ν12 = 0.25

The subscripts 1 and 2 denote the directions normal and transverse to the fiber direction in a
lamina, which may be oriented at an angle to the plate axes. The ply angle of each layer is
measured from the global x-axis to the fiber direction. In all examples we use a shear correction
factor k = π2/12, as proposed in Liew.
Table 1 lists the fundamental frequency of the simply supported laminate made of various modulus
ratios of E1/E2. It is found that the results are in very close agreement with the values of
literature and the meshfree results of Liew based on the FSDT. The relative errors between the
analytical and present solutions are shown in brackets. For all E1/E2 ratios errors are below 0.5%.
Results for all E1/E2 ratios converge quite well.

Method Grid E1/E2

10 20 30 40
Liew 8.2924 9.5613 10.320 10.849
Exact (Reddy, Khdeir) 8.2982 9.5671 10.326 10.854
Present Oscillatory 9× 9 8.3000 9.5413 10.2688 10.7654

13× 13 8.2999 9.5411 10.2686 10.7652
17× 17 8.2999 9.5411 10.2686 10.7652
21× 21 8.2999 9.5411 10.2686 10.7652

Present Gaussians 9× 9 8.2999 9.5411 10.2686 10.7652
13× 13 8.2999 9.5411 10.2686 10.7652
17× 17 8.2999 9.5411 10.2686 10.7652
21× 21 8.2999 9.5411 10.2686 10.7652

Table 1. The normalized fundamental frequency of the simply-supported cross-ply laminated square plate
[0◦/90◦/90◦/0◦] (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2)
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Figure 2. First eight vibration modes of the simply-supported cross-ply laminated square plate [0◦/90◦/90◦/0◦],
E1/E2 = 10, 13× 13 nodes
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